
Feedback on the use of ROS
in the InFuse project

Journée ROS - robots mobiles terrestres
Clermont-Ferrand – 4 Juillet 2018

emendes@laas.fr
pnarvor@laas.fr

Ellon PAIVA MENDES
Pierre NARVOR

mailto:emendes@laas.fr
mailto:pnarvor@laas.fr

The InFuse project

"Infusing Data Fusion in Space Robotics"

• One of six projects of Space Robotics Technologies SRC (Horizon 2020)

• Aims to develop of a Common Data Fusion Framework (CDFF) building block

• To serve through all SRC upcoming activities

• LAAS is only involved with the planetary rovers (not the orbital track)

• CDFF development

• Absolute map-based localization

• Alternative perception techniques (hyper spectral cameras, lidars, etc)

What is CDFF?

• Common Data Fusion Framework

• Defines a functional architecture to integrate the data fusion process

• that is flexible and generic

• with clear inner and outer interfaces

• expose products (maps and positions)

• and algorithm models (to allow their control)

(outputs)
CDFF products

Environment
models

Poses

(inputs)

1. Acquired data
• IMU
• Images
• Point clouds
• …

2. Initial data & models
• Orbiter maps
• Satellite models
• …

3. Knowledge
• Terramechanics
• Dynamics
• …

CDFF

Core processes

Internal data structures

CDFF functional architecture

Project constraints

• ESROCOS should be used as Robot Control Operational System (RCOS)

• Space oriented RCOS being developed in a parallel project

• Problem: ESROCOS is not ready yet! → We decided to use ROS instead.

• Data exchanged between nodes should be described using ASN.1

• Interface description language for defining data structures that can be

serialized and deserialized in a standard, cross-platform way.

• We decided to user ASN.1 over ROS messages.

ASN.1 Communication interface

TASTE-BasicTypes DEFINITIONS ::=
BEGIN

-- Set of TASTE predefined basic types
T-Int32 ::= INTEGER (-2147483648 .. 2147483647)
T-UInt32 ::= INTEGER (0 .. 4294967295)
T-Int8 ::= INTEGER (-128 .. 127)
T-UInt8 ::= INTEGER (0 .. 255)
T-Boolean ::= BOOLEAN

END

• ASN.1 (Abstract Syntax Notation One) widely used communication standard.
• Exchanged types defined in high level .asn abstract description files.

ASN.1 Communication interface
• ASN.1 (Abstract Syntax Notation One) widely used communication standard.

• Exchanged types defined in high level .asn abstract description files.

• ASN1SCC : ESA’s ASN.1 compiler for safety-critical embedded systems.
• .asn compiled into C files with ready to use serialization functions

TASTE-BasicTypes DEFINITIONS ::=
BEGIN

-- Set of TASTE predefined basic types
T-Int32 ::= INTEGER (-2147483648 .. 2147483647)
T-UInt32 ::= INTEGER (0 .. 4294967295)
T-Int8 ::= INTEGER (-128 .. 127)
T-UInt8 ::= INTEGER (0 .. 255)
T-Boolean ::= BOOLEAN

END

#ifndef GENERATED_ASN1SCC_TASTE_TYPES_H
#define GENERATED_ASN1SCC_TASTE_TYPES_H

typedef int T_Int32;

#define T_Int32_REQUIRED_BYTES_FOR_ENCODING 4
#define T_Int32_REQUIRED_BITS_FOR_ENCODING 32
#define T_Int32_REQUIRED_BYTES_FOR_ACN_ENCODING 4
#define T_Int32_REQUIRED_BITS_FOR_ACN_ENCODING 32
#define T_Int32_REQUIRED_BYTES_FOR_XER_ENCODING 39

flag T_Int32_Encode(const T_Int32* val, BitStream*
pBitStrm, int* pErrCode, flag bCheckConstraints);
flag T_Int32_Decode(T_Int32* pVal, BitStream* pBitStrm,
int* pErrCode);
...

Serialization
functions

Separation between "core" and ASN.1

• Core functionalities are being written into libraries

• Libraries are wrapped in/used by a "main" program that may be written in

Genom3 + ROS or pure ROS

• ASN.1 related code stays outside the libraries

• ROS is used as implementation middleware

• Libraries use any internal representation for data (pcl, eigen, etc)
• Data is converted from/to an according ASN.1 type
• The ASN.1 type is converted to/from bitstream using asn1scc

encode/decode functions
• Bitstream is stored in a ROS message for output to/input from

the middleware

ASN.1 and ROS

A single ROS message type
● Only one type of ROS message is exchanged between the modules

ROS common header
std_msgs/Header header

Identification of the type : ASN.1 name
string type

Serialisation method : 0 (uPER), 1 (BER), 2 (XER)
uint8 serialization_method

Buffer with ASN serialised data
uint8[] data

ASN.1 Tradeoffs

• Pros

• International widely used standard, mature technology

• Simple text notation for type definition with physical encoding rules

• Independent from programming languages

• ASN1SCC compiler : free, open-source, ready to use

• Cons

• ASN.1 ROS message used are not human readable

• Extra computation overhead (to be assessed)

• Some encoding limitations (e.g. NaN or Inf encoding missing)

Integration with docker
• Part of the project may be supplied as dockers images

• Allow easy use of software with closed source code

• Dockers communicate through ROS using the same type of ROS message

Visualization with rviz
• Rviz plugin implemented to decode and display data

LAAS Rovers (not on Mars)

Minnie
Mana

LAAS Rovers Hardware

• Segway rmp400 and rmp440 platforms.

• Six-axis IMU
• (accelerometer, gyrometer, magnetometer).

• One axis Fiber-optic gyro.
• (100Hz, drift of 1 deg/hour after correction).

• RTK GPS.
• (20Hz, cm accuracy => corrections provided by a nearby base).

LAAS Rovers Hardware

• Lidar rover (Mana):
• Panoramic Lidar velodyne HDL64.

● (Scan rate 5-20Hz, vertical FOV -24/+2deg, 1.4M points per second)

• Vision rover (Minnie):
• Panoramic Lidar velodyne HDL32.

● (Scan rate 10Hz, vertical FOV -30/+10deg, 700k points per second)

• 1 NavCam stereo bench on a PTU.
• Automotive Lidar

● High resolution point cloud, FOV 110x90deg.

• 2 HazCam fixed stereo benches (front and rear)

LAAS Rovers System Diagram

GPS Base +
Wifi Station

Operator

Robot

Base
Controller

GPS
Receiver

2 Industrial computers:
- DEM Building
- Lidar-based SLAM
- Visual Odometry
- Position Manager

- Data fusion + server
- ROS bags

Stereo
bench 1

Stereo
bench 3

Stereo
bench 2

Velodyne
Lidar

Sick
Lidar

Hyper-
spectral
camera

PTU
Controller

Feedback from trials at CNES

• First tests performed during the last two weeks

• (in fact mostly integration work…)

• Data acquisition in ROS bags with joystick controlled robots

• Needed to have some ASN.1 translator nodes here and there...

• Single ROS message + ASN.1 helped integration with partners (Magellium)

• Detected some latency/bandwidth problems

• Less point clouds in the bags than expected (need to investigate why)

• Acquired datasets still being analysed.

Conclusion

• Not an optimal solution
• ROS being used only as communication layer + debugging
• Still a work in progress…

• Some questions:
• Could we generate .msg from .asn files?
• Should we use nodelets to reduce message passing?
• Are we doing something very wrong here? :)

